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ABSTRACT

We present the collection of eclipsing binaries in the Large and Small Magellanic Clouds, based

on the OGLE survey. It contains 48 605 systems, 40 204 belonging to the LMC and 8 401 to

the SMC. Out of the total number of the presented binaries, 16 374 are the new ones. We present

the time-series photometry obtained for the selected objects during the fourth phase of the OGLE

project. The catalog has been created using a two step machine learning procedure based on the

Random Forest algorithm.
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1. Introduction

Binary stars are interesting in astrophysical studies for various reasons. They

are an extremely useful tool for the determination of physical parameters of individ-

ual stars (e.g., Pietrzyński et al. 2010, Hełminiak et al. 2015, Gallena et al. 2016).

Moreover, eclipsing binaries can also serve as a precise distance ruler (e.g., Pie-

trzyński et al. 2013, Graczyk et al. 2014).

The Magellanic System, composed of the Large (LMC) and Small Magellanic

Clouds (SMC) – two satellite galaxies of the Milky Way – is a perfect environment

for the stellar variability studies. Eclipsing binaries in this region have already been

1Based on observations obtained with the 1.3-m Warsaw telescope at the Las Campanas Observa-

tory of the Carnegie Institution for Science.



Vol. 66 1

analyzed in the previous phases of the Optical Gravitational Lensing Experiment

(OGLE). The catalogs from the second phase of the project (OGLE-II) have been

prepared by Udalski et al. (1998) and Wyrzykowski et al. (2004) in the SMC and

by Wyrzykowski et al. (2003) in the LMC. Graczyk et al. (2011) and Pawlak et al.

(2013) presented the OGLE-III catalogs of eclipsing binaries in the LMC and SMC,

respectively. Search for varible stars in the Gaia South Ecliptic Pole, located in the

outskirts of the LMC resulted in discovery of 1377 eclipsing binaries (Soszyńsk

et al. 2012). Large samples of this type of variable stars in the Magellanic System

have also been published by Alcock et al. (1997), Faccioli et al. (2005) and Derekas

et al. (2007) based on the MACHO project, as well as by Muraveva et al. (2014)

and Kim et al. (2014) from the EROS project data.

The identification of a statistically significant samples of binary systems in the

LMC enabled the calibration of the period–luminosity relations formed by contact

or close systems. Relations for ellipsoidal red giants have been studied by Wood et

al. (1999), Rucinski and Maceroni (2001), Soszyński et al. (2004) and Pawlak et

al. (2014). Period-luminosity-color relation formed by early-type, massive contact

binaries has been recently presented by Pawlak (2016).

In this work, we present the OGLE collection of binary stars in the Magellanic

System, containing 48 605 objects including 40 204 systems in the LMC, and

8 401 in the SMC. The structure of the paper is as follow. Section 2 describes

the technical details of the instrumental setup, observations and data reduction.

Section 3 presents the machine learning procedure based on the Random Forest

algorithm used to select the objects. The collection of the eclipsing binaries in the

Magellanic System is presented in Section 4. Section 5 contains the discussion

of the results. Section 6 describes a system with a Type II Cepheid as one of the

components, and Section 7 summarizes the results.

2. Observations and Data Reduction

All the data used in this work were collected during the fourth phase of the

OGLE project, between March 2010 and July 2015, using the 1.3-m Warsaw tele-

scope located at Las Campanas Observatory (operated by the Carnegie Institution

for Science) in Chile. The telescope is equipped with a 32-chip mosaic camera,

with a total field of view of 1.4 square degrees. The whole area of the Magellanic

Clouds region covered by 475 OGLE-IV fields is about 650 square degrees.

Observations were carried out in the I- and V-band filters, with about 90%

taken in the I-band. The I-band magnitude range covered by OGLE-IV is from

13 to 21.5 mag. The number of collected epochs varies between 100 and 700. The

photometry was obtained with the Differential Image Analysis method (Alard and

Lupton 1998, Wozniak 2000). For technical details of the OGLE-IV instrumental

setup and date reduction system we refer the reader to Udalski et al. (2015a). The

procedure of the photometric uncertainties correction is presented in Skowron et
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al. (2016)

3. Machine Learning Classification

3.1. Period determination

The first problem in the process of binary stars selection is the period determi-

nation. The Fourier-transform-based algorithms, like Lomb-Scarlge periodogram

(Scarlge 1982) commonly used for this purpose (e.g., Kim et al. 2014), work well

for pulsating variables. However, they often fail in the case of strongly non-sinusoidal

light curves like those of eclipsing stars. Detached binaries with very narrow

eclipses are especially problematic in this case.

Therefore, the Box-fitting Least Squares (BLS) algorithm (Kovács et al. 2002)

was used to determine the period for each I-band light curve collected by OGLE

in the area of the Magellanic Clouds. This method, which was designed to look

for transit variability, seems to be better suited for the search for eclipsing binaries.

Another benefit of using BLS is that apart from the period, the algorithm also pro-

vides a series of parameters of the light curve which can be used as a features in the

machine learning classification process.

For all of the objects used in this study the periods are determined with the BLS

algorithm, with the search range between 0.04 d and 1000 d, with 50000 steps in

the frequency range. The minimum and maximum value of the fraction of points

in eclipse q are set to 0.01 and 0.3, respectively. We used the BLS implementation

from VARTOOLS Light Curve Analysis Program (Hartman and Bakos 2016).

3.2. First Step

With the periods determined for all of the objects, the proper machine learning

classification was a next step. For that purpose the Random Forest (Breiman 2001)

was used. To perform this type of classification, a training set needs to be con-

structed first. The OGLE-III catalog of eclipsing binaries in the LMC (Graczyk et

al. 2011) was used for this purpose. The entire sample of known eclipsing binaries

from one of the OGLE-IV fields (LMC501) containing 1017 object was comple-

mented with a matching number (1024) of other, randomly selected stars from the

same field. The BLS statistics (Tab. 1) were used as features for Random For-

est. The implementation of this algorithm from the WEKA data mining software

package (Hall et al. 2009) was used.

The overall performance of the classifier was evaluated with a 10-fold cross-

validation method, resulting in the average accuracy of 97.6%. To describe the

performance of the method more precisely, two parameters were used. To measure

the completeness of the search, we defined a recall parameter, which is the ratio

of the number of true positives to the entire number of all binaries. The purity of

the sample is measured by the precision parameter, defined as the ratio of the true

positives to all positive detections. For the first step of the classification both of



Vol. 66 3

these parameters were high: 97% and 98%, respectively. While the recall level

can be considered as satisfactory, the precision of the search had to be improved,

because with millions of objects to be classified, even a 2% false positive ratio can

generates a very large number of false detections. Therefore, further steps were

implemented to perform classification more effectively.

To reduce the number of false detections, the cut on the probability is intro-

duced. The positive detection threshold is increased from default 50% to 80%.

This step decreases slightly the recall of the classification to 93%, but it allows us

to eliminate the large number of false detections which is essential when classify-

ing the whole spectrum of observed objects, out of which most are not eclipsing

binary stars.

3.3. Second Step

At the beginning of the second step of the classification, the training set is com-

posed of the objects, that passed the first step – both true and false detections. The

ratio of true to false positives in the output of the first step is about 1:6. Apart

from the BLS parameters, a series of statistical features (standard deviation, skew-

ness, kurtosis, third and first quartile difference, Stetson K index (Stetson 1996)

and von Neumann index (von Neumann 1941)) was used. The list of parameters

used in the second step is given in Tab. 2. Classification is again performed with

the Random Forest. Recall of this step, evaluated on the training set with 10-fold

cross-validation is 89% and precision of 88%.

Taking into account the previously evaluated recall of the first (94%) and sec-

ond step (89%), one can estimate a theoretical recall value of the entire procedure

to be 83%. To verify this, a sample of the OGLE-III binary stars from a different

field (LMC532) is used as a test set. This set contains 962 objects, out of which

none has been used in the training set of the procedure, therefore they can be used

to reliably evaluate the recall parameter of the classifier. After performing a two

step classification process, 761 objects have been correctly classified as eclipsing

binaries, resulting in a recall of 81.5%, only slightly lower than the predicted one.

As a final verification, the light curves of all the eclipsing binary candidates

returned by the automatic classifier are subjected to visual inspection.

4. Eclipsing Binaries in the Magellanic System

The collection of the eclipsing binaries in the Magellanic System presented

in this work consists of objects from the OGLE-III catalogs (Poleski et al. 2010,

Graczyk et al. 2011, Pawlak et al. 2013), Classical and Type II Cepheids in the

eclipsing systems (Udalski et al. 2015b, Soszyński et al. 2008, 2010), as well as

16 374 newly discovered objects making a total of 48 605. Out of the entire sample,

40 204 binary systems are classified as belonging to the LMC and 8 401 to the

SMC. The division between the LMC and SMC is set on the celestial meridian of
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Table 1: Parameters obtained with the BLS algorithm used in the first and second

step of the classification process. For full description of the parameters see Kovács

et al. (2002).

Parameter Description

P Period

SR Signal Residue

SN Signal to Noise Ratio

SDE Signal Detection Efficiency

D Depth of transit

q Fraction of the phase in transit

χ2 χ2 of the transit model fit

RN Red Noise

WN White Noise

SPN Signal to Pink Noise Ratio

Pinv Period of inverse transit

χ2
inv χ2 of the inverted transit model fit

I mean I-band magnitude

Table 2: Statistical parameters used in the second step of the classification process

only.

Parameter Description

σ standard deviation

γ1 skewness

γ2 kurtosis

Q3 −Q1 difference between third and first quartile

η von Neumann index

K Stetson K index
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Fig. 1. Examples of phased light curves of eclipsing binary systems in the Magellanic System.
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2.8h , the same as the one adopted by Soszyński et al. (2016) for RR Lyrae stars in

the Magellanic System.

Eclipsing binaries are traditionally divided into three subtypes: contact, semi-

detached, and detached. The identification of likely contact systems can by done

relatively easily based on the morphology of the light curve. These objects have

a smooth transition from the eclipse to the out-of-eclipse phase and two minima

of the same or very similar depth, due to the fact that the systems are in thermal

equilibrium and both components have the same surface temperature. The situ-

ation becomes more difficult for semi-detached systems, which are often hard to

distinguish from the close but still detached ones, using the photometric data only.

Therefore, in this work we divide our sample of eclipsing binaries into contact

and non-contact, with the latter ones containing both semi-detached and detached

objects. We also extract a sample of non-eclipsing, ellipsoidal binaries.

Example light curves of the objects from the catalog are presented in Fig. 1. The

entire collection is available to the astronomical community in the OGLE Internet

Archive, accessible via FTP sites or a web interface:

ftp://ftp.astrouw.edu.pl/ogle/ogle4/OCVS/lmc/ecl/

ftp://ftp.astrouw.edu.pl/ogle/ogle4/OCVS/smc/ecl/

http://ogle.astrouw.edu.pl

The collection contains the list of parameters of the objects (coordinates, pe-

riods, I- and V-band out-of-eclipse magnitudes, epoch of primary eclipse, depth

of primary and secondary eclipse), as well as I- and V-band time series photome-

try collected during the fourth phase of the OGLE survey. This photometry can be

combined with the OGLE-III data (Graczyk et al. 2011, Pawlak et al. 2013), though

in individual cases it may be necessary to adjust magnitudes and amplitudes as they

may vary slightly due to blending and crowding. Cross-identification with the Gen-

eral Catalog of Variable Stars (Artyukhina et al. 1995) is also provided.

5. Discussion

The I-band magnitude range of objects presented in our sample is from 13 to

20.4 mag. The histogram of the magnitudes is presented in Fig. 2. The distribution

has a maximum at 19 mag. The completeness of the search drops rapidly for sys-

tems fainter than 19.6 mag, as the noise of photometric measurements increases,

making it difficult to detect eclipsing stars.

The distribution of the orbital periods is presented in Fig. 3. The majority of

systems have period within the range of 1-10 d. This is different from the typi-

cal distribution for Galactic binary stars (e.g., Pietrukowicz et al. 2013), where the

maximum falls to a period shorter than 1 d. This is likely an observational bias.

Large fraction of short-period binaries consists of W UMa type stars, which are in

most cases fainter than 21 mag and they cannot be detected in the OGLE data. The
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absence of these objects in our sample shifts the maximum of the histogram toward

the longer periods.
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Fig. 2. Histogram of the out-of-eclipse magnitudes of binary systems in the Magellanic System.
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Fig. 3. Histogram of the orbital periods of binary systems in the Magellanic System.

The large area of the sky covered by OGLE-IV allows us to study the distri-

bution of the eclipsing systems in the whole Magellanic Clouds. Distribution of

objects from the studied sample on the sky is presented in Fig. 4. While identified

eclipsing binaries are likely to be a mixture of populations, they seem to trace the

bar and spiral arms of the LMC and group around the center of SMC, which re-

sembles more the distribution of the young population (Soszyński et al. 2015) than

the old one (Soszyński et al. 2016). It is also consistent with the young population

maps for the Magellanic Bridge region (Skowron et al. 2014).

Location of the identified systems in the color-magnitude diagram (Fig. 5 and

Fig. 6) shows that most of them are main sequence stars of A and B type, thus they

belong to the young population. However, there is also a significant sample of red

giant binaries, especially among the ellipsoidal systems.
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Fig. 4. The spatial distribution of binary stars in the area of the Magellanic System. Gray area shows

the sky coverage of the OGLE-IV fields.

6. Eclipsing Binary with a Type II Cepheid

OGLE-LMC-ECL-26653 (Fig. 7) is an eclipsing system with one of the com-

ponents being a type II Cepheid. This object was not included in the OGLE-III col-

lection of type II Cepheids in the LMC (Soszyński et al. 2008), since it is located

outside the OGLE-III area. The orbital period of the system is Porb = 242.4338 d

and the pulsation period of the Cepheid is Ppuls = 9.39258 d. The shape of the pul-

sation light curve shows that this object belongs to the so called peculiar W Virginis

stars – a subtype of type II Cepheids distinguished for the first time by Soszyński

et al. (2008). The automatic search procedure identified this object as an eclipsing

binary candidate, showing the capability of the method to detect even such peculiar

objects. OGLE-LMC-ECL-26653 is the fourteenth type II Cepheid in an eclipsing

binary system discovered in the Magellanic System by the OGLE survey.

7. Summary

The OGLE-IV collection of binary systems in the Magellanic System presented

in this work contains 48 605 objects, which makes it the largest catalog of binary

stars in this stellar environment. 40 204 objects were identified as belonging to the

LMC and 8 401 to the SMC. We provide a series of parameters as well as I- and
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Fig. 7. OGLE-LMC-ECL-26653 light curve phased with the pulsating period (left panel) and with

the orbital period (right panel, pulsating variability prewhitened).

V-band time-series photmetry of the identified objects.

The search was performed using a two-step machine learning method based on

the Random Forest algorithm and the final verification of each of the candidates was

done with visual inspection. The overall completeness of the search is estimated to

be over 80%.

The catalog reaches up to 20.4 mag in I -band, with the relatively high com-

pleteness up to 19.6 mag. The spatial distribution of objects from the sample as

well as their position in the color-magnitude diagram suggest that most of them are

main sequence stars belonging to the young population.
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Pawlak, M., Soszyński, I., Pietrukowicz, P. et al. 2014, Acta Astron., 64, 293.

Pawlak, M. 2016, MNRAS, 457, 4323.

Pietrukowicz, P. et al. 2013, Acta Astron., 63, 115.
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